Exponential Rank of C*-Algebras with Real Rank Zero and the Brown-Pedersen Conjectures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separative Exchange Rings and C * - Algebras with Real Rank Zero

For any (unital) exchange ring R whose finitely generated projective modules satisfy the separative cancellation property (A ⊕ A ∼= A ⊕ B ∼= B ⊕ B =⇒ A ∼= B), it is shown that all invertible square matrices over R can be diagonalized by elementary row and column operations. Consequently, the natural homomorphism GL1(R) → K1(R) is surjective. In combination with a result of Huaxin Lin, it follow...

متن کامل

Invertibility-preserving Maps of C∗-algebras with Real Rank Zero

In 1996, Harris and Kadison posed the following problem: show that a linear bijection between C∗-algebras that preserves the identity and the set of invertible elements is a Jordan isomorphism. In this paper, we show that if A and B are semisimple Banach algebras andΦ : A→ B is a linear map onto B that preserves the spectrum of elements, thenΦ is a Jordan isomorphism if either A or B is a C∗-al...

متن کامل

Stable Rank and Real Rank of Graph C ∗ - Algebras

For a row finite directed graph E, Kumjian, Pask, and Rae-burn proved that there exists a universal C *-algebra C * (E) generated by a Cuntz-Krieger E-family. In this paper we consider two density problems of invertible elements in graph C *-algebras C * (E), and it is proved that C * (E) has stable rank one, that is, the set of all invertible elements is dense in C * (E) (or in its unitization...

متن کامل

Extremal Richness of Multiplier and Corona Algebras of Simple C∗-algebras with Real Rank Zero

In this paper we investigate the extremal richness of the multiplier algebra M(A) and the corona algebra M(A)/A, for a simple C∗-algebra A with real rank zero and stable rank one. We show that the space of extremal quasitraces and the scale of A contain enough information to determine whether M(A)/A is extremally rich. In detail, if the scale is finite, then M(A)/A is extremally rich. In import...

متن کامل

On the Classification of Simple Z-stable C-algebras with Real Rank Zero and Finite Decomposition Rank

We show that, if A is a separable simple unital C-algebra which absorbs the Jiang–Su algebra Z tensorially and which has real rank zero and finite decomposition rank, then A is tracially AF in the sense of Lin, without any restriction on the tracial state space. As a consequence, the Elliott conjecture is true for the class of C-algebras as above which, additionally, satisfy the Universal Coeff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1993

ISSN: 0022-1236

DOI: 10.1006/jfan.1993.1060